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A compar i son  of the f requenc ies  c~ the valence v ibra t ions  of the OH group and of the chemi -  
cal  shif ts  of the protons  of the hydroxyl  groups in (~-naphthol de r iva t ives  containing the 
n i t rogen a tom of the condensed r ing of pyridine,  pyraz ine ,  1 ,2 ,5-se lenadiazole ,  1 ,2 ,5- thia-  
diazole,  1 ,2 ,5-oxadiazole ,  and imidazole  in the p e r i  posi t ion to the hydroxyl  group is in- 
dicat ive of the dec is ive  effect  of the molecu la r  geome t ry  on in t r amolecu la r  hydrogen bonding 
in s y s t e m s  with r ig id ly  fixed configurat ions.  All conditions being equal, the in t ramolecu la r  
hydrogen bond is cons iderab ly  weaker  when the ni trogen atom is pa r t  of a f i v e - m e m b e r e d  
r a t h e r  than a s i x - m e m b e r e d  he te rocyc le .  This is explained not only by  an i nc rea se  in the 
dis tance between hhe proton donor and acceptor  (which may  be the s ame  in some cases) ,  but 
also by  the g r e a t e r  deviation of the orbi tal  of the unshared e lec t ron pa i r  of the ni trogen of 
the f i v e - m e m b e r e d  he te rocyc le  f r o m  the O...N line and, thus, by  i ts  g r e a t e r  d is tance f r o m  
the hydrogen atom. For  the s ame  favorab le  mo lecu l a r  geometry ,  the OH...N bond is s t ronger  
than the OH...O bond because  of the high bas ic i ty  of the ni t rogen atom. 

In t ramolecu la r  hydrogen bonds with the par t ic ipat ion of a nitrogen atom as a proton aceeptor  have 
rece ived  much l e s s  s tudy than hydrogen bonds with the par t ic ipat ion of a carbonyl  oxygen, which have 
se rved  as the chief objects  in the c rea t ion  of modern  concepts  of in t r amolecu la r  hydrogenbonding.  Data on 
s i x - m e m b e r e d  chelate  r ings  with OH...N bonds involve p r i m a r i l y  o-hydroxyazo  compounds and o-hydroxy-  
azomethines ,  i .e. ,  s y s t e m s  with re la t ive ly  f lexible configurat ions which p e r m i t  dis tor t ion of the valence 
angles during closing of the hydrogen bonds. 

In an investigation of naphtho[2,3-h]quinoline-7,12-dione (I) we advanced the assumption of the acid 
ca ta lys i s  of nucleophilic addition reac t ions  through the fo rmat ion  of an in t r amolecu la r  hydrogen bond in 
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T A B L E  1. I n t r a m o l e c u l a r  Hydrogen  Bond C h a r a c t e r i s t i c s  * 
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* Symbols: vOH is the frequency of the valence vibrations of the 
O-H bond, AVOH is the shift in the band of the O-H bond with 
respect to the band of (~-naphthol, Au I/2 is the half-width of the 
O-H band, AOH is the integral intensity of the O-H band (104 
liter-mole-l-era-2), 6 OH is the chemical shift of the proton of 
the hydroxyl group, and A6 OH is the shift in the signal of the 
proton of the hydroxyl group as compared with ~-naphthol. 
~' Relative to tetramethylsilane. 

E x t r a p o l a t i o n  to  in f in i t e  d i lu t ion .  

the  p r o t o n a t e d  m o l e c u l e  (I1)[1, 2], 9 , 1 0 - A n t h r a q u i n o n e  d e r i v a t i v e s  which  con ta in  a c a r b o n y l  g roup  (Ill) [3], 
a p y r a z i n e  n i t r o g e n  a t o m  (IV) [4], a 1 , 2 , 5 - o x a d i a z o l e  [5, 6], 1 , 2 , 5 - t h i a d i a z o l e  [7], o r  a 1 , 2 , 5 - s e l e n a d i a z o l e  
[8] g r o u p i n g  (V) in the  s - p o s i t i o n  have  s i m i l a r  r e a c t i v i t i e s  with r e s p e c t  to  nuc l e oph i l i c  agen t s .  

To s o l v e  the  p r o b l e m  of the  r o l e  of the  t e n d e n c y  f o r  c h e l a t e  f o r m a t i o n  in t h e s e  c o m p o u n d s  i t  is  n e c -  
e s s a r y  to have  d a t a  on the s t r e n g t h  of the  h y d r o g e n  bond invo lv ing  the n i t r o g e n  of the  a p p r o p r i a t e  h e t e r o -  
c y c l e  in s y s t e m s  with r i g i d l y  f ixed ,  t h r e e - d i m e n s i o n a l  s t r u c t u r e s .  A s tudy  of the  e f f ec t  of the m o l e c u l a r  
g e o m e t r y  on the h y d r o g e n  bond i s  a l s o  of i ndependen t  i n t e r e s t .  

A n g u l a r l y  c o n d e n s e d  ~ - n a p h t h o l  d e r i v a t i v e s  (VI-XI) which  con ta in  a h y d r o x y l  g r o u p  in the  p e r i  p o s i -  
t ion to  the  n i t r o g e n  of the h e t e r o c y c l e  (Table  1) a r e  s u i t a b l e  m o d e l s .  Compounds  with  p y r i d i n e  (V1) [9] and 
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Fig. 1. IR s p e c t r a  (in carbon t e t r a -  
chloride):  1) 10-hydroxybenzo[h]-  
quinoline (VI); 2) 1-hydroxybenzo[a]-  
phenazine (VII); 3) 9-hydroxynaphtho-  
[1,2-c] [1,2,5] selenadiazole  (VIII); 4) 
9-hydr  oxynaphtho [1,2-e] [1,2,5]thiadi- 
azole (IX); 5) 9-hydroxynaphtho[1,2-c]-  
[1,2,5]oxadiazoIe ~X). Concentrat ions:  
1), 3), 4), and 5): 3.2 �9 10 -~ M; 2) 6.2 �9 
10 -3 M. Laye r  th ickness :  1) and 2) 
9.99 m m ;  3), 4), and 5) 20.06 ram. 

pyraz ine  (VII) [10] r ings  a re  descr ibed  in the l i t e ra tu re ,  but 
there  a re  no quantitative c h a r a c t e r i s t i c s  for  the hydrogen 
bonds in them. We synthesized naphthols with the ni t rogen 
of the f i v e - m e m b e r e d  r ing  in the per i  posit ion to the hydroxyl  
group espec ia l ly  fo r  this s tudy [11]. 

We used IR and PMR spec t roscopy  to study the hydro-  
gen bonds. The f requenc ies  of the O - H  valence vibra t ions  
and the chemical  shifts  of the protons  of the hydroxyl  groups 
were  measured .  As seen f r o m  the r e su l t s  of m e a s u r e m e n t s  
p resen ted  in Table  1, the v OH band in the IR s p e c t r a  of VI- 
XI  is shifted to lower  f requencies ,  while the I~MR signals  of 
the phenolic protons  (6 OH) a re  shifted to weak field, which 
indicates the p r e sence  of a hydrogen bond. The absence  of 
a concentra t ion dependence indicates  that  it is in t ramolecu la r  
in nature.  Unsubsti tuted a-naphthol  was taken as the c o m -  
par i son  sample  in the calculat ion of the shifts (~v = v 0 - v 
and A6 = 6 - 6 0) which c h a r a c t e r i z e  the hydrogen bond. The 
s t ruc tu ra l  s im i l a r i t y  of the objects makes  it poss ib le  to r e -  
la te  the d i f fe rences  in the chemica l  shifts  and the symba t i -  
ca l ly  r e l a t ed  a l te red  f requenc ies  due to the change in the 
hydrogen bond energy.  The co r rec t ion  to 6 OH due to dif-  
f e r ences  in the r ing cu r r en t s  [16] in the mos t  unfavorable  
case  can  s c a r c e l y  exceed 0.5 ppm and, thus, does not change 
the overa l l  p ic ture .  An approx imate  evaluation of the hydro-  
gen bond energy  f r o m  the f o r m u l a  [17] E H = ( A v / k  �9 v0) �9 102, 
s ta r t ing  f r o m  k -- 1.98, calcula ted on the bas i s  of data  on the 
in terac t ion  of phenol with pyr id ine  [18], gives a range  of 2.2 
to 10 kca l /mo le .  

Hydroxybenzoquinoline (VI) and hydroxybenzophena-  
zine (VII), whose Av OH and A6 OH values  (Table 1) exceed 
those of 1-hydroxyanthraquinone and s im i l a r  hydroxyqui-  

nones, have the s t ronges t  hydrogen bonds.  The g r e a t e r  s t rength of the OH...N bond as compa red  with the 
OH...O bond is natural  in view of the significant d i f ference  in the bas i c i ty  of the proton acceptor .  The 
bas ic i t i e s  of the ni t rogen in quinolines and phenazines  [19] a re  ~ 12 and eight o rde r s  of magnitude higher,  
r e spec t ive ly ,  than the bas ic i ty  of the carbonyl  oxygen in anthraquinone [20]. The IR s p e c t r a  of VI and VII, 
l ike the s p e c t r a  of hydroxyquinones,  contain a ma rked ly  diffuse band at 2400-3400 cm -1 (Fig. 1, cu rves  1 
and 2) which is c h a r a c t e r i s t i c  fo r  compounds with a s t rong in t r amolecu la r  hydrogen bonding. 

different  p ic tu re  is obse rved  in the group of 1 ,2 ,5-diazoles  (VIII-X), where  the sp2-hybridized n i t ro -  
gen a tom also s e r v e s  as the pro ton  acceptor .  As seen  f r o m  the Av OH and A6 OH values,  the hydrogen bond 
in diazoles  VIII-X is weaker  than in 1-hydroxyanthraquinone.  The band of the O - H  valence vibrat ion in the 
IR spec t r a  appea r s  as a dis t inct ly e x p r e s s e d  peak  with a half-width of 60-80 cm -1 (Fig. 1, cu rves  3-5).  
The re  is no d i rec t  dependence between the e lec t ronegat iv i ty  of he t e roa tom X, which de te rmines  the bas ic  ity 
of the 1 ,2 ,5-X-diazoles  and the c h a r a c t e r i s t i c s  of the hydrogen bond; while the weak hydrogen bond in oxa-  
diazole X co r r e sponds  to the high e lec t ronegat iv i ty  of oxygen, the hydrogen bond in se lenadiazole  VIII is 
apprec iab ly  s t ronger  than that  in thiadiazole IX although the e lec t ronegat iv i t ies  of se lenium and sulfur  a toms 
a re  about the s ame  [21]. 

The sha rp  di f ference  in the c h a r a c t e r i s t i c s  of the hydrogen bond in the hydroxy der iva t ives  of pyr idine 
(VI) and pyraz ine  (VII), on the one hand, and of 1 ,2 ,5-diazoles  VIII-X, on the other,  m e r i t s  discussion.  

The r ings  of 1 ,2 ,5-oxa- ,  - th ia - ,  and - se lenad iazo les  a re  p lanar  a romat ic  s y s t e m s  with equalized 
bonds [22-24], and these  compounds a re  the e lec t ronic  analogs of pyraz ine ,  just  as furan,  thiophene, and 
selenophene a re  the e lec t ronic  analogs of benzene.  Quantum-chemica l  calcula t ions  indicate [25] that the 
~r - e l e c t r o n  densi ty  on the ni t rogen atom and the C - N  bond order ,  which a re  impor tant  fo r  ~ conjugation 
through the hydrogen bond [26], a re  no l e s s  in 1,2,5-benzothiadiazole and 1 ,2 ,5-benzoselenadiazole  than in 
quinoline and phenazine.  The re  a re  no d i rec t  m e a s u r e m e n t s  of the bas i c i t i e s  of 1 ,2 ,5-diazoles ,  but data  
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Fig. 2. Schematic depiction of the 
d i rec t ion  of the axis of the orbi ta l  
of the unshared e lec t ron  pa i r  of the 
ni t rogen a tom of a s i x - m e m b e r e d  
he te rocyc le  (1) and of a f i v e - m e m -  
b e r e d  he te rocyc le  (2) during the 
fo rma t ion  of an i n t r amolecu la r  hydro -  
gen bond. 

which demons t r a t e  the s i m i l a r i t y  of 1 ,2 ,5- th ia-  and - s e l enad i a -  
zoles  to pyraz ine  [27] make it poss ib le  to a s sume  that the dif-  
f e rence  in bas i c i ty  between 1 ,2 ,5-X-diazoles  (X = S, Se) and 
pyraz ines  should not be significant.  In any case ,  i t  is l e s s  than 
the di f ference between py raz ines  and pyr id ines ,  which is ~ 4 pK a 
units [19], but has  l i t t le  effect  on the hydrogen bond in VI and 
VII. In the 1 ,2 ,5-diazole  s e r i e s  the CCN angle, which is 119 
deg in se lenadiazole  [24], 114 deg in thiadiazole [23], and 109 
deg in oxadiazole [221, d e c r e a s e s  with dec reas ing  he t e r ea tom 
(X) s ize.  The dec r ea se  in the CCN angle entai ls  an i nc rea se  
in the O...N dis tance and, correspondingly ,  the H...N dis tance 
in hydroxynaphthodiazoles ,  which explains the m o r e  rapid  de -  
c r e a s e  in the hydrogen bond ene rgy  in naphthothiadiazole IX 
and naphthoxadiazole X than might  have been expected f r o m  
the e lec t ronega t iv i ty  of he t e roa tom X. In se lenadiazole ,  how- 
ever ,  the CCN angle r e aches  about the s a m e  value as in p y r i -  
dine or  pyraz ine .  

The weakening of the hydrogen bond in se lenadiazole  VIII as compa red  with pyraz ine  VII cannot be 
explained by e i ther  a d e c r e a s e  in ba s i c i t y  or  by  an i nc rea se  in the d is tance  between the proton donor and 
acceptor ,  or  by  de te r io ra t ion  of the conditions fo r  ~r conjugation through the hydrogen br idge.  In our opin- 
ion, the r eason  f o r  the d i f fe rences  in VII and VIII cons i s t s  in the different  or ientat ion of the orbi ta l  of the 
unshared  e lec t ron  p a i r  of the ni t rogen which is a pa r t  of the s ix -  and f i v e - m e m b e r e d  he te rocyc le  (Fig. 2). 
As a consequence of in te re lec t ron ic  repuls ion,  the axis of this  orb i ta l  is s i tuated c lose  to the b i s ec to r  of 
the angle f o r m e d  by the ni t rogen bond and the adjacent  a toms and is 120 deg in pyr id ines  and pyraz ines  and 
105 deg in 1 ,2 ,5-se lenadiazole  [24]. As a resul t ,  the axis of the sp2-hybrid orbi ta l  of ni t rogen in hydroxy-  
naphthoselenadiazole  VIII devia tes  m o r e  m a r k e d l y  f r o m  the O.~ line (Fig. 2, angle fi), which r e su l t s  in a 
d e c r e a s e  in the over lap  with the orbi ta l  of the hydrogen atom and a d e c r e a s e  in the hydrogen bond energy.  
In thiadiazole IX and oxadiazole X, as in the m a j o r i t y  of other s i m i l a r  compounds,  this f ac to r  acts  in con-  
]uction with the i nc r ea s e  in the d is tance  between the proton donor and acceptor .  

Hydrogen bonding involving the par t ic ipa t ion  of the ni t rogen atom of imidazole  can s e rve  as an i l lus-  
t ra t ion  of what has  been stated.  The IR s p e c t r u m  of 9-hydroxynaphth[1,2-d] imidazole  {XI) (the PMR sp ec t ru m 
could not be  m e a s u r e d  because  of i ts  low solubility) contains a nar row band f r o m  the f r e e  NH group at 3465 
cm - t  which is not shifted on dilution (Table 1). This indicates  that  the NH group, as was assumed,  is in the 
f i -pos i t ion  of the naphthalene r ing in naphth[1,2-d]imidazoles  [28], while the hydroxyl  group pa r t i c ipa te s  in 
in t r amolecu la r  bonding, whose s t rength  cons iderab ly  exceeds  that of the hydrogen bond in benzoquinoline 
VI, whose bas i c i t y  is c lose  to that  of these  compounds.  At the s a m e  t ime,  judging f r o m  the c h a r a c t e r  of 
the IR s p e c t r a  (diffuse v OH band at 2400-340() cm-1),  there  is a v e r y  s table  chela te  r ing  in 2 - (o -hyd roxy-  
phenyl)benzimidazole  {XIID [29]. The absence  of hydrogen bonds in XI  and XIII  is  apparent ly  explained by  
the fac t  that, in the la t t e r ,  s t e r i c  h indrance (the i nc rea se  in the O.. .N dis tance  and deviation of the orbi ta l  
of the unshared  e lec t ron  pa i r  of nitrogen) is e l iminated  owing to f lexible  fusion of the phenyl res idue  to the 
benz imidazo le  r ing.  One should a lso  take into account the fac t  that  an imidazole  C - N  bond which has  a 
higher  o rde r  is included in the chela te  r ing  of XIII.  

XI]I XIV 

~narp de te r io ra t ion  in the conditions fo r  c los ing of a hydrogen bond occurs  on pass ing  f r o m  a s ix -  
m e m b e r e d  chela te  r ing  to the m o r e  s t ra ined  f i v e - m e m b e r e d  ring. Judging f r o m  the dependence of 5 OH 
on the solution concentra t ion,  there  is no c l e a r l y  e x p r e s s e d  in t r amolecu la r  hydrogen bond even in 8 -hydroxy-  
quinoline (XIV) [30], which contains the ni t rogen c~ a s i x - m e m b e r e d  he te rocyc le ,  although the shif ts  in the 
IR s p e c t r a  (Av) [31] and in the PMR s p e c t r a  (~6) a r e  e x t r e m e l y  significant .  The fo rma t ion  of a f i v e - m e m -  
be red  chelate  r ing  in a condensed s y s t e m  with the par t ic ipa t ion  of a f i v e - m e m b e r e d  he te rocyc le  is even 
m o r e  hindered.  An example  of this is 4-hydroxybenzo[c][1,2,5] thiadiazole  (XID, where  the absence of i n t r a -  
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molecular  hydrogen bonding is indicated by both the cha rac te r  of the 
concentrat ion dependence in the PMR spec t ra  (Fig. 3) and the small  
shifts,  widths, and intensit ies of the OH band in the IR spec t ra  (Table 
1) .  

This compar i son  of model compounds leads to the conclusion 
that the tendency for  closing of an in t ramolecular  hydrogen bond in 
the protonated fo rm s  of quinones I and III-V should dec rease  in the 
o rde r :  I -  > IV >III>> V. The hindrance to format ion  of a chelate 
br idge with the part ic ipat ion of the nitrogen of a f i ve -membered  he te ro -  
cycle  in anthraquinone der ivat ives  should be still  g rea te r  than in hy-  
droxy compounds VIII-XI as a consequence of the more  rigid at tach-  
ment of the carbonyl  oxygen as compared  with the phenolic oxygen. 
In fact ,  in t ramolecular  hydrogen bonding like that in c~-aminoanthra- 
quinones [32] and phthaloylacridones (XVI1) [33] is complete ly  absent 
in anthraquinoneimidazole XV and anthraquinonetr iazole XVI. In con-  
t r a s t  to c~-aminoanthraquinones and XVII, there  is no splitting of the 
carbonyl  band (v CO 1672 cm -1) in the IR spec t r a  of XV and XVI, and 
a VNH band is observed at 3440-3460 cm -1. The same pic ture  was 
noted for  diphthaloylcarbazoles (XVIID [34]. 

II 
0 0 

XVII XVII| 

In cont ras t  to quinones I, III, and IV, it is apparent  that the development of a hydrogen chelate br idge 
during protonation is energe t ica l ly  unfavorable for  anthraquinonediazoles V and the re fo re  cannot play an 
important  ro le .  The high reac t iv i ty  of anthraquinonediazoles with r e spec t  to nucleophilic agents is chiefly 
due to the increased  polar izabi l i ty  of the ~r - e l ec t ron  sys tem of the r ing adjoining the he te rocyc le ,  which is 
caused by  the disrupt ion of the equalization of the bonds with par t ia l  local izat ion of the diene s t ruc ture  [35]. 

EXPERIMENTAL 

The IR spectra d ~carbon tetrachloride solutions (chloroform solution for XI) were recorded with a 
UR-20 spectrometer for concentrations of 1 �9 i0 -I to 2 o10 -4 M and layer thicknesses of 0.i to 5 era at 

35 deg. The integral intensities were determined by the Burzhen method [36]. The accuracy in the mea- 

surements in the frequencies was • 5 cm -I, while that in the measurements of the integral intensities was 

10%. The IR spectra of XV and XVI were obtained from KBr pellets. 

The PMR spectra of deuterochloroform solutions were measured with an RS-60 spectrometer (60 MHz) 

[37] for concentrations of ~ 1 mole % at room temperature with cyclohexane as the internal standard. The 

results were converted to the tetramethylsilane standard by adding 1.43 ppm. The accuracy of the mea- 

surements was • 0.05 ppm. 

The r e f e r ences  fo r  the methods for  prepar ing  VI-XII are  indicated in Table 1. Anthra[1,2-d]imidazole-  
6,11-dione (XV) and anthra[1 ,2-d] t r iazole-6 ,11-dione (XV1) were p repared  according to [38] and [39], 
respect ive ly .  
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